The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.
نویسندگان
چکیده
A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported.
منابع مشابه
Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae.
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of lactic acid. Unexpectedly, the cyb2Delta reference...
متن کاملEfficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter...
متن کاملEffect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production
Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pas...
متن کاملIdentification of a pyruvoyl residue in S-adenosylmethionine decarboxylase from Saccharomyces cerevisiae.
S-Adenosylmethionine decarboxylase from Saccharomyces cerevisiae has been purified to homogeneity. Acid hydrolysis of NaB3H4-reduced enzyme released 2.2 mol of tritiated lactate per mol of dimeric enzyme, indicating that a pyruvate moiety is present. Inhibition of enzymatic activity by NaBH4 reduction and by carbonyl-binding reagents indicates that this pyruvoyl residue is required for the acti...
متن کاملRedirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 70 5 شماره
صفحات -
تاریخ انتشار 2006